Selectome, looking for Darwinian selection in the Tree of Life

Marc Robinson-Rechavi, Heinz Stockinger and Nicolas Salamin

Department of Ecology and Evolution, University of Lausanne

And

Swiss Institute of Bioinformatics

HP2C meeting, Lugano March 16-17, 2010

Département d'écologie et évolution

Evolution

One area of biology is interested to understand how life on earth was shaped by evolution.

- Natural selection, described first by Darwin (1859), is the main evolutionary force acting on natural variation.
- Selective pressure from the environment drive evolution by allowing the fittest to leave more offsprings.

2 that Litra A & B. ma ulition C+B. T. enter hitaden The game unto be homed . - the new Walter

Evolutionary theory predicts that species share common ancestor

Tree of Life from Darwin to today

Phylogenetic tree

SIB

Environment creates selective pressure

 creates random mutations in genome that can modify phenotype (biochemical function, gene expression, ...)

Effects of these mutations

- most have negative effect (i.e. deleterious); will be removed by purifying selection
- some have no effect; may be fixed under the neutral process of drift
- others are beneficial; will be kept by positive selection (also called Darwinian, adaptive, or directional selection)

Positive selection is the mechanism of adaptation to the environment. It important to find its trace in genomes.

Selective pressure on proteins

species	Α	L	Р	н	Y	Protein
1	GCC	CTT	ССТ	CAT	TAT	DNA
species 2	Α	R	Р	н	Y	Protein
	GCC	C <u>G</u> T	ССТ	CAT	TA <u>C</u>	DNA

Mutation rate, genetic drift and time:

 $dS = \frac{\text{Number of synonymous changes}}{\text{Number of synonymous sites}}$

Mutation rate, genetic drift, time and selection pressure:

 $dN = \frac{\text{Number of non-synonymous changes}}{\text{Number of non-synonymous sites}}$

Selective pressure on proteins

species 1	Α	L	Р	н	Y	Protein
	GCC	CTT	ССТ	CAT	TAT	DNA
species 2	Α	R	Р	н	Y	Protein
	GCC	C <u>G</u> T	ССТ	CAT	TA <u>C</u>	DNA

Mutation rate, genetic drift and time:

 $dS = \frac{\text{Number of synonymous changes}}{\text{Number of synonymous sites}}$

Mutation rate, genetic drift, time and selection pressure: $dN = \frac{\text{Number of non-synonymous changes}}{\text{Number of non-synonymous sites}}$

The parameter $\omega = dN/dS$ gives the strength of Darwinian selection.

- If amino acid change is neutral ⇒ will be fixed at same rate as synonymous mutation, so ω = 1
- ► if amino acid change is deleterious ⇒ purifying selection reduce its fixation rate so ω < 1</p>
- ► if amino acid change is selectively advantageous ⇒ will be fixed at higher rate than synonymous mutation, so ω > 1

Looking for Darwinian selection

IFTTFRS

nature

Vol 437 20 October 2005 doi:10.1038/nature04240

Natural selection on protein-coding genes in the human genome

Carlos D. Bustamante¹, Adi Fledel-Alon¹, Scott Williamson¹, Rasmus Nielsen^{1,2}, Melissa Todd Hubisz¹, Stephen Glanowski³, David M. Tanenbaum¹, Thomas J. White⁴, John J. Sninsky⁴, Ryan D. Hernandez¹, Daniel Civello⁴, Mark D. Adams⁵, Michele Cargili⁴ & Andrew G. Clark⁵

Comparisons of DNA polymorphism within species to divergence between species analyste di scovery of molecular adaptation in evolutionarily constrained genes as well as the differentiation of weak from strong purifying solection¹⁴. The extent to which weak negative and positive darwinian selection have driven the molcular evolution of different species varies great/s⁻¹⁶, with some species, such as *Drosophila melanogaster*, showing strong evidence of pervasive positive selection²⁶, and others, such as the selfing weed *Arabidopsis* thaliana, showing an excess of deleterious variation within local populations²⁶. Here we contrast patterns of coding sequence polymorphism identified by direct sequencing some form of coding nucleotide variability either within human subjects or between humans and a chimparzee. A total of 34,009 fixed synonymous differences between all humans in our sample and the chimparzee yield a genomic average synonymous divergence of $\overline{d_g} = 1.024^{\circ}$. Correspondingly, we found 20,467 non-synonymous differences ($\overline{d_g} = 0.242^{\circ}$) across 11.81 mcgabases (Mb) of aligned synonymous SNP among the human subjects, yielding average synonymous SNP and non-synonymous SNP densities of $\overline{p_g} = 0.426^{\circ}$, across SNP densities of $\overline{p_g} = 0.426^{\circ}$, across SNP densities of $\overline{p_g} = 0.426^{\circ}$, across SNP densities of $\overline{p_g} = 0.426^{\circ}$.

Unil

Genes and Darwinian selection

Known genes involved in arm-race

- virus and bacteria: HIV proteins (env, gag, pol) or H1N1 influenza
- MHC to recognize any kind of external peptides in our body
- genes involved in sexual reproduction (sperm lysin in abalone, protamine P1 in primates)
- genes of perseption and digestion (e.g. olfactory receptor, lysosyme)

We need a systematic assessment of genes and lineages affected by Darwinian selection.

Selectome database

Modeling molecular evolution

How to infer evolutionary changes along each branch of a tree

- Markov model for transitions between states
- Maximum likelihood estimation of parameters
- Dynamic programming algorithm

Number of mutation events

$$\frac{A \quad A \rightarrow A}{time} \qquad A \rightarrow G \quad G \rightarrow T \quad T$$

Substitution events occur according to a continuous time Markov chain. The number of these events along a branch has a Poisson distribution:

$$Prob[k \text{ events}] = \frac{(\mu t)^k e^{-\mu t}}{k!}$$

- μ is the rate of mutations
- expected number of events in time t is µt

The Markov chain is characterized by its generator matrix $Q = \{q_{ij}\}$, where q_{ij} is the instantaneous rate of change from nucleotides *i* to *j* when $\Delta t \rightarrow 0$, that is

$$Pr\{X(t + \Delta t) = j | X(t) = i\} = q_{ij}\Delta t$$

The Q matrix fully determines the dynamics of the Markov chain.

It specifies, in particular, the transition-probability matrix over any time t > 0, $P(t) = \{p_{ij}(t)\}$ where

$$p_{ij}(t + s) = Pr\{X(t + s) = j | X(t) = i\} = \sum_{k}^{k} p_{ik}(t) p_{kj}(s)$$

with the relationship

$$P(t) = e^{Qt}$$

11 ... : 0

Swiss Institute of 28 Bioinformatics

Swiss Institute of 28 Bioinformatics

For the full tree, we get

$$Prob(A, C, C, C, G, x, y, z, w | T, Q) = \sum_{x}^{ACGT} \sum_{y}^{ACGT} \sum_{z}^{ACGT} \sum_{w}^{ACGT} \sum_{x}^{ACGT} \sum_{y}^{ACGT} \sum_{z}^{ACGT} \sum_{w}^{ACGT} \sum_{x}^{ACGT} \sum_{y}^{ACGT} \sum_{z}^{ACGT} \sum_{w}^{ACGT} \sum_{x}^{ACGT} \sum$$

Dynamic programming can speed up this calculation by some margin.

Codon data: from 4 to 61 states

Second letter							
		U	С	А	G		
	U	UUU UUC UUA UUA UUG	UCU UCC UCA UCG	UAU UAC Tyr UAA Stop UAG Stop	UGU UGC UGA Stop UGG Trp	U C A G	
it letter	С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC His CAA CAA GIn	CGU CGC CGA CGG	U C A G	Ihiro
FILS	A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU AAC AAA AAG	AGU AGC AGA AGG Arg	U C A G	letter
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAA GAG	GGU GGC GGA GGG	U C A G	

Unil

Codon models

$$q_{ij} = \begin{cases} 0, & \text{if } i \text{ and } j \text{ differ at more than one position} \\ \pi_j, & \text{for synonymous transversion} \\ \kappa \pi_j, & \text{for synonymous transition} \\ \omega \pi_j, & \text{for non-synonymous transversion} \\ \omega \kappa \pi_j, & \text{for non-synonymous transition} \end{cases}$$

where

- κ is the transition/transversion ratio
- π_j is the frequency of codon *j*
- ω measures selective pressure on amino acid

Q is 61 by 61 sparse matrix with null values known a priori.

Problem: Q has to be exponentiated every time one of the n-1 branch length changes (*n* is nb of species).

More complex model

- foreground where positive selection occurs
- background where neutral or purifying selection occurs

Class	Proportion	Background ω	Foreground ω	
0	p_0	$0<\omega_0<1$	$0<\omega_0<1$	$1 \ 1 \ 2 \ C \ 4 \ 5$
1	p_1	$\omega_1 = 1$	$\omega_1 = 1$	t_{c} t_{7}
2a	$rac{(1-p_0-p_1)p_0}{(p_0+p_1)}$	$0<\omega_0<1$	$\omega_2 > 1$	
2b	$\frac{(1-p_0-p_1)p_1}{(p_0+p_1)}$	$\omega_1 = 1$	$\omega_2 > 1$	x v v

Compare this with a null model where ω_2 is fixed with Likelihood ratio test.

Limitations for Selectome

The size of the datasets to analyze will increase dramatically and exponentially.

Computational workflow

- for each gene (ca. 20,000 genes)
- for null and alternative models
 - for each site of a sequence (ca. 1000 on average)
 - calculate the likelihood at each node
 - ► n 1 nodes for n species (ca. 30 species)
- repeat every 2-3 months when Ensembl is updated.

Impossible to compute Darwinian selection for all genes of interest with current implementation before the information is outdated.

We have a CPU bound problem in the estimation of the prevalence of selection in biology.

Mail

Streamlining calculations

- step 2 use completely independent data sets and is embarrassingly parallel computations
- further parallelization
 - steps 2-i and 2-ii have the potential to reuse the likelihood calculations done for one edge.
 - step 2-iii involves empirical Bayesian estimation of sites under selection, which can be optimized by setting appropriate prior distributions and reusing likelihood calculations efficiently from steps 2-i and 2-ii.

Costs: higher memory usage, and non independence between computations.

Mail

Actual code is made to analyse *n* species for one gene under a single model at a time. It was never made for genome wide studies

Using Newton-Raphson type of algorithms, it estimates

- codon model parameters (κ, different ω and p_i)
- branch lengths

It takes on average 20 minutes per job for ca. 30 species. We want to analyse ca. 20,000 genes for data that is increasing exponentially.

Take also advantage of the optimization experience of the RAxML project

- SSE3-based optimization of the likelihood kernel
- exploitation of fine-grain loop-level parallelism using Pthreads and MPI (scales up to 8 or 16 cores on DNA models O(4²) vs O(61²))
- once model parameters are optimized, coarse-grained model of parallelism by
 - storing probability vectors
 - gather operation on the codon data distributed in a cyclic way to the threads during fined grained phase
- NUMA-specific data locality issues (e.g. impact of first touch policies) specifically for required memory of per-branch probability vector pairs assignment and accession

Marc Robinson-Rechavi (DEE-UNIL, SIB) Sébastien Moretti Walid Gharib

Nicolas Salamin (DEE-UNIL, SIB) Maryam Zaheri

Heinz Stockinger (SIB) Thierry Schuepbach (SIB)

Hannes Schabauer (HP2C)

Ziheng Yang (UCL) Alexis Stamatakis (U. Tech. Munich)

